Topic Generation of Matrices for Determining Minimum Distance and Decoding non-cyclic goppa codes
Paper instructions:
Paper details
– A simple method based on Newton’s identities arid
their
extensions is presented for determining the actual
minimum distance of
cyclic codes. More significantly, it is shown that this
method also provides
a mechanism for generating the type of syndrome
matrices needed by
Feng and Tzeng’s new procedure for decoding
cyclic and BCH codes up
to their actual minimum distance. Two procedures
for generating such
matrices are given. With these procedures, we have
generated syndrome
matrices having only one class of conjugate
syndromes on the minor
diagonal for all binary cyclic codes of length n < 63
and manly codes
of length 63 5 n 5 99. A listing of such syndrome
matrices for selected
codes of length R < 63 is included. An interesting
connection of the
method presented in this correspondence to the
shifting technique of .
can you prepare a new paper for publication , i think
work on
generation matrices for non-cyclic goppa code be an
idea for further
work.
You can place an order similar to this with us. You are assured of an authentic custom paper delivered within the given deadline besides our 24/7 customer support all through.
Latest completed orders:
# | topic title | discipline | academic level | pages | delivered |
---|---|---|---|---|---|
6
|
Writer's choice
|
Business
|
University
|
2
|
1 hour 32 min
|
7
|
Wise Approach to
|
Philosophy
|
College
|
2
|
2 hours 19 min
|
8
|
1980's and 1990
|
History
|
College
|
3
|
2 hours 20 min
|
9
|
pick the best topic
|
Finance
|
School
|
2
|
2 hours 27 min
|
10
|
finance for leisure
|
Finance
|
University
|
12
|
2 hours 36 min
|