Planetary motion lab
The gravitational constant, symbolized G, is a physical constant that appears in the equation for Newton's law of gravitation. Sir Isaac Newton (1642-1727), the English mathematician, quantified the behavior of the force of gravity. He noticed that the gravitational force between two objects is proportional to the product of their masses, and inversely proportional to the square of the distance between their centers. According to Newton's law , given any two objects having mass m1 and m2 (in kilograms) whose centers of mass are separated by a distance x (in meters), there exists an attractive gravitational force F (in units of Newtons) between the objects, such that:
Formula of Newton's law of gravitation
Image: Formula of Newton's Law of Gravitation.
The value of G in this equation is approximately equal to 6.67 x 10-11 Newton meters squared per kilogram squared (N x m2 x kg-2). This constant is uniform throughout the Solar System, and apparently throughout our ga
Formula of Newton's law of gravitation
Image: Formula of Newton's Law of Gravitation.
The value of G in this equation is approximately equal to 6.67 x 10-11 Newton meters squared per kilogram squared (N x m2 x kg-2). This constant is uniform throughout the Solar System, and apparently throughout our ga